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ABSTRACT

In this paper we present a method, based on linear interpolation, for
detecting and correcting bad data points in a set of data without
contaminating the good data points. We are not concerned with the
small random errors usually attributed to a noisy system and assume
that the data points which are in error are relatively isolated from
each other and that the number of such points is small compared to the
total number of data points _ :
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Data Smoothing and Error Detection

Based on Linear Interpolation

V. M. Guerra* and R. A. Tapia¥*

1, Introduction. In tﬁe handling of large sets of data

it is not uncommon to inadvertently introduce errors into
the data. Typicgl causes for the introduétion of error
might be:

(a) Reading error;

(b) Keypunch error;

(c) Maéhine malfunction.
In this paper we consider the proBlem of detecting and removing
these errors without contaminatiﬁg thé good data. We are
not concerned with the small random errors usually attributed
to a noisy system. Therefore it seems reasonable to ex-
péct that the data ﬁoints which are in error are relatively
isolated.frém each other and that the number of such points
is small compéred to the total number:of data points;
however the errors themselves will probably be quite large.
 This latter consideration alone forces us to reject.the
well-known averaging techniques for data smoothing [3]; since

the bad data would significantly effect the good data.

* Department of Mathematical Sciences, Rice University, Houston,
Texas 77001. This work was sponsored by NASA-MSC under
contract NAS 9-12776. -



If we consider removing the errors by smoothing the
data using splines and least squares (see [U4], {6], [T]
norm (least

2

squares) is sensitive to outliers (henée, again our bad

and[81 ), then it is well-known thatAEhe L

poiﬁts‘would ihfluéncekour good points). This observation

immediately suggests the use of splines and the 11 norm via .

linear programming with differential inequality constraints

(seé[2] and [5] ). Our main.reasqn for.rejecting both Ii |

and I? (as well as L ) approaches is both obvious and ex-
tremely realistic. Namely) for large data sets, such as

the remote sensiﬁg data presentlylbéing énalyzed atvNASA

1 °F L2 approach

would require a prohibitive amount of computer time and

Manned Spacecraft Center, the use of the L

computer stdrage and would undoubtedly lead to extreme
numerical instabilities. The amount of work required to
implement these two approaches is of the order of n3 where
n is the number of data points. The approach we are about
to describe is of order n (i.é. the work increases linearly
with the_data). Moreover, while we acknowledge the fact
th;t both the Ii and L2.approaches would probably give sat-
isfactory resulté for small data sets we feel our approach
will do as well.

In this paper we consider only the one-dimensional problem.
In subsequent papers we.will extend our approach'to higher
dimensiﬁns and also consider using methods of interpolation

more sophisticated than linear interpolation.



2. Thé,Linear Smoothing Algorithm. Consider a set of points

in the plane with equally spaced abscissas, say

A = ((x,,3,): i=1,...,m).

Definition 1. By an anchor point of the set A we mean a

point which is assumed to be correct and is not to be
smoothed.
Remark. We shall assume that (xl,yl) and (xm,ym)vafe

always anchor points of the set A,

Definition 2._By the point energy of the non-anchor point
(xi;yifé'A_We'mean the (ordinate)'disfance from thelliﬁe
passing through the points.(xi_l,yi;l) and (xi+1,yi+1)
to the point (xi,yi), If (xi,yi) is an anchor point,

then its'point energy is zero.

Définition 3. By the total energy of the set A we mean the sum

of the point energies of all points in A(i.e., the Ll-norm of

the point energies).

Definition 4. By the smoothness of the set A we mean the

largest point energy (i.e., the L_-norm of the point energies).

Moreover, we say that A is e-smooth if the smoothness of A is

less than or equal to €.

Proposition 1. The following are equivalent:

(a) The set A is 0O-smooth;

(b) The set A has zero total energy;



(c) The set A lies on the piecewise-linear function

which interpolates the anchor points of A.

Proof. Thé proof is stréightforward.

Definition 4. By the normalized second difference at the

point (xi,yi) € A we mean

b of =

i %yi+1 - Yi + %yi-l’ i=2,...,“_‘-1'

Proposition 2. If oy denotes the point energy of the non-

anchor point (xi,yi) € A, then
a, = Il

Proof. The proof is not difficult.

-Definition 5, By tﬁe_lingar smoothing approach we mean
the transformation of the set A into an e-smooth set by
successive changes of the values of the ordinates of the
points with the largest point energies. Specifically, if

k«k€n is such that o =max{ai:1$i£n} (if more than one such

k
k exists then we choose the one of smallest index), then

we change the point (xk,yk) to the point (xk,yk+9krk)

for some %SGkSI and repeat the procedure until (hopefully)
the transformed éet is e€e-smooth (for some given €20).

Remark., If 6k=0, then the data is not modified. If 9k=1,

then we are moving the point (xk,yk) onto the line inter-

polating its two neighbors; hence by requiring %seksl we

have guaranteed that the point energy at the k-th point



will decrease at least by a factor of 3.
Remark. For simplicity we may choose Gk always equal to

a constant, e.g., %, % or 1. A |

'3, Convergence of the Linear Smoothing Algorithm. To dis-
tinguish between the vélues of the point energies an& other
quantitiés at diffefent iterations a subsc:ipt, or a second
subscript (whatever the case may be) will be added whenéver
~necessary. For example A will denote the set A at the n-th
iteration of fﬁellinear smoothing process. We also let

AO denote A._

Pfoposition'3. If E denotes the total energy of A , then

{En }is a monotone nonincreasing sequence. Moreover

E <E - %ekak,n

(k denotes the index of point in A_ which
n+l= "n _ o n
is to be“modified)’if either the (k-l)-th or (k+1)-th point is

an anchor point. Flpally we have En+1 = En if and only if

T and r are of the same sign and the (k-1)-th

k-1,n’ "k,n k+l,n
and (k+1)-th pointé are not anchor points.

Proof. All the point energies except possibly 1 ak and

o are the same at the n-th and (n+l)-th iteration.

YKk+1

Moreover

Ve,ni1 © Yk,n T O k,n’
hence
Te+1l,0+1 - Tk+l,n T 0T, n
(1) = T + ]9 r

r .
k~1,n+1 k-1,n "“k k,n



Tr,n+l (1-8, 0T n°

Now since Oéekél we have

'\rk,n%ll = (l'ek)|rk,n|'

.

Therefore taking absolute values, using the triangle

inequality and adding in (1) we have that En+1f€En'

Clearly if the (k-1)-th or the (k+l)-th point is an
anchor point we must have a decrease in the total energy

of at least %Bk‘rk n" Again from (1) we will have a de-
’ . ’ . |

crease if either.rk_1 or’rk+1’n has'a dlffereng sign

than Ty n; This proves the proposition.
’ R

Remark. Althoﬁgh the energy of An may be equal to the

+1
energy of An(i.e., no decrease) it may happen that An+1
is significantly smoother than An' However a simple example

can be constructed to show that the smoothness(in contrast to

the energy) is not monotone nonincreasing; hence for certain

purposes the natural criterion (norm) to use is the energy.

Proposition 4. If the total energy of the set An is not
zero, then the maximum number of iterations that can occur

without decreasing this energy 1s bounded above by

(where m is the number of data points).:

Proof. We will first show that if the energy is not decreased,
then we can only modify a particular point twice before moving

on to another point. Suppose we operate twice on the point



(xk,yk). The result of the first iteration is given by (1)
and the result of the second is easily seen to be

2
1 1 -
+(38, + 30, (1-8,)%)r,

Tk+1,n+2 - Tk+1,n

rk-l,n

2
1 1 (1-
Tk=1,n+2 (30 + 30, (-8

: 2
Tk,n+2 (=807 -

Now since the energy did not decrease we must have by

Proposition 3, that r r and r are all of

k-1,n’ "k,n k+1l,n
the same sign. Also, since %4ek51 we have

2
1 > - o

thlg shows that lrk+1,n+2|>'|rk,n+2 . It follows that

(xk’ykﬂﬁ2) ‘will not be modified on the suBsequent

iteration. It is not difficult to show that we will move

one point in at most 2 iterations, 2 points in at most 2+22
K .

iterations and in general K points in at most I 2t iterations.
i=1 :

This proves the proposition.

Remark. The bound given in the previous proposition is far
from being sharp. It merely demonstrates an important fact
which will allow us to prove convergence.

Proposition 5. The sequence En giving the total energy

at each iteration of the linear smoothing algorithm converges



to zero.
Proof. From Proposition 3 {En] is a monotone nonincreasing
sequence which is bounded below by zero; therefore it converges.

Suppose "E_ ~ E20. First note that for each n=1,2,...

there exists an‘integef 14j(n)<£ m such that o, Z-E.
j(n),n" m

To see this suppose « n<:§ for 1l&i<m.

i,
. 4 m
Then En =¥ o, <m — = E, which contradicts Proposition 3.

By Proposition 3 and 4 for some integer neJ(n)en+2™ we have that

Eyn) ¢ B4 k%K, 1
<E - 20,1
<E - E/ (4m). o (i=J(n)-1)
Now, since Eﬁé:E we have En-E = 'En-E|; therefore given €>0

there exists N>0 such that En-E'Ce whenever n>N. We have

EJ(n) E £ En - E/ (4m) -E

< e.- E/(4m).
Now choosing ¢ < E/ (4m) giveS‘EJ(n)< E; which again contradicts

Pfoposition 3. This proves the proposition.

Definition 6. Let A_ ={ (%, y?hi=l,...,m } for n=0,1,2,... .

We say that the sequence of sets {An] converges to the set



n .
A% =‘{(xi,yi*): i=1,...,m} if yi-'y? for i=1,...,m.

Proposition 6. The total energy is a continuous functional,

i.e. if A — A%, then E(An)"E(A*)..
n

Proof. 1If An4A*, then the sequence of vectors yn=(y?,...y;)

cohverges to the vector y*=(yf,...,y;) pointwise; hence in
any norm., Let a,'n'denote the point energy at the j-th point
’ ’

of An’ with a similar definition for ag. A simple construction

shduld convince the reader that

Jay et 2lly -yl

It follows that aj n*a? and therefore E(An)*E(A*). This

’

proves the proposition.

Proposition 7. The linear smoothing algorithm converges,

i.e., the sequence of sets {An] converges to a set A* with
total energy zero.
Proof. We use the same notation as in the proof of Propo-

sition 6. Clearly UynwaEHybnw’ for n=1,2,3,... . Hence

must have a subsequence which is convergent say to y*,
y k ; g ’ y y

If A* is the set corresponding to y*, then by Proposition 5 and
Proposition 6 E(A*) = 0. If the entire sequence does not
converge to y*, then each neighborhood of y* excludes infinitely

many members of { yn}. These excluded members must have a

1

convergent subsequence. If y** denotes this limit, then
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E(y*) = E(y**) = 0; hence y* = y*%; but this is a contra-

diction., This proves the proposition.

Remark. We have spent considerable time and effort proving
that the linear smoothing algorithm converges to a solution
which could have been immediately written down. Of course the
complete philosophy of this approach is that we only allow a

- few iterations. 1Indeed, as our examples will show, this
philosophy is quite natural and analogous to what would be
"done by an artist or a loftsman by hand. Namely, the algo-
rithm con§erges very quickly to an acceptable solution and
from then on the convergenée is extremely slow. Our main
reason f@r proving convergence was to demonstrate that

the algorithm will not oscillate.



L. Examples, Consider the twenty points A = {(1,y(1)),..., (20,y(20)))

'taken from the greph of the cubic

X=-7)(x-10 -13
() - LeD(e100Gely)

As it stands the set A is .0297-smooth. In our.first example we
will introduce an error of .5 in the 1ll-th data point. We introduce
errors of -.5 in the 9-th point and .5 in the 11-th point for our
second example, Finally, the third example will consist of the points
of A with an error of -.5 in the 10-th point and .5 in the 1l-th
point. Based on our theory we should expect the first two examples
to behave better than the third, Indeed, we obtain a curve as smooth
as the 6riginal curve in just one iteration for thé first example and
in just two iterations for the second example; however- the third
example requires five'iterations. All the following Calculafions
were performed using a value of one for 9.

| Observe that all three examples show that the energy is monotone
bdeéreasing and that the smoothness.is not mondtone decreasing. How-
"~ ever these exambles imply that a reasonable stopping criterion (since
we do not ﬁant to‘end up with a straight line) is to stop at the first
iteration where the smoothness increases. In our examples this is the
iteration at which the original smoothness is restored.

The following tables and graphs are reasonably self-explanatory;

however we point out that the values for the energy and smoothness
were calculated at the beginning of each itération and not at the

end.

11



EXAMPLE 1
X y
1 -0400000 =-0.71209 —O.¥l209
2 De05000 =-0.48352 —0,48352
3 0410000 =0.30769 —0e630769
4 Je15000 ~0.17802 =0,17802
5 020000 =-0.08791 =-0.08791
5 0625000 -0.03077 =-0.03077
.7 030000 0e0 0.0
8 0s35%000 001099 001099
9 0.40000 0.00879 0.008379
10 045000 0e0 0.0
i1 0650000 -0s00879 Cat9121 error
12 0¢55000 =0401099 —0e01099
13 060000 0.0 0e0
14 0e 63000 Ne03077 0.03077
15 0.70000 0. 08791 Ve 08791
16 075000 017802 Del7802
17 080000 030769 . 0430769
18 0+85000 0.48352 0e453352
19 0+90000 0.71209 071209
20 0.95000 1.00000 1.00000
ITER ENERGY SMOOTHNESS POINT MOVED
1 1.26044 049670 11
2 0.26703 0.02967 19
3 0.25220 0.04121 18
4 0.25220 0e04 362 17
5 0.25220 . 0.04162 16
6 0e.25220 003729 15
7 025220 0.03183 14
8 0.25220 0.02637 2
9 0.23901 0. 03626 3
10 0.23901 0.03791 4

12



i3

-0.

-1

.000

.00C

EXAMPLE 1

.8004

.6001

. 400

.200

.00+

.2004

. 400

.60C+

8604

LINEAR SMOOTHING

smocTHNESS= .0.0296"

1 ITERATIONS

1

o



L ~NOU & -

L Y
N = C

13
14
15
16
17
18
19
20

ITER

CODNPU S W

-

X
-0.00000
0.05000

0.10000°

015000
020000
0625000
030000
0Oe 35000
040000
D¢ 45000
050000
0e55000
0¢H0000
0e65000
0«70000
0+75000
0.830000
085000
0. 90000
095000

ENERGY

1.75384
1.25714
026374
0424890
Ne 24890
0.24890
0e24890
0e24890
0e24890
0.23571

EXAMPLE 2
y y
-0.471209 -0,71209
"=0.48352 ~0,48352
030769 -0.3076G
~0417802 =-0,17802
~0.08B791 ~0,08791
~0.03077 -0.03077
00 0e0
0e010 Y 001094
0.0087% =0449121 error
0.0 " 00
0000879 0e49121 error
~0e01099 -0.01099
0.0 00
0.03077 0.03077
0.08791 0.08791
017802 0,17802
0430769 0.30769
0.48352 0e48352
Ve71209 0e71209
1.00000 1.00000
SMOOTHNWESS POI.LT F.0VE
0449670 9
0e49670 11
002967 19
OeD4121. 18
0.04368 17
0e04162 16
0e03729 15
003133 14
0e02637 2
0.03626 3

14
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EXAMPLE 2

1.600

0.8004

0.6001

0.4004

0.200+

~0.000

-0.2004

-0.400

-0.6001

~-0.8004 -

LINEAR SMOOTHING
SMOOTHNESS= O, 4967
1 ITERATIONS

-1.00¢

10

i1

20
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EXAMPLE &

1.000
0.800
0.600 LINEAR SMOOTHING
SMCOTHRESS= 0, 0296 ' ' ' 4
0.400 2 ITERATIONS ' '
0.200-
-0.000 + + -
-0.200-
-0.400
+
-0.600
-0.800
-l-ooo i ) 4 i { 1 3 q ) ] L . * ¥ L] . 1) ] 1) Ll
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 15



ITER

~ .
CLC I NOPANLUWUNM

OO NG U & W -

11
12
13
14
15
16
17
18
19
20

EXAMPLE 3
X v y
~0.00000 =0e71209 =0e712009
0.05000 —06423352 =~Ue48352
0e10000 =0.30769 =0630769
Vel15000 =0417802 =0,17802
0.20000 =0.08791 =0,08771
0625000 =0.03077 =0.03077
NDe 30000 0e0 Ue0
0.35000 0.01099 001099
0+40000 000679 000379
045000 De0 —0e50000
050000 =0.008749 Det121
055000 =-0.01099 =Ge010%9
060000 040 0e0
0.65000 0.03077 0.03077
0470000 0.08791 008731
0e 75000 0e17802 0el7802
0.80000 0.30769 Ve30764
0e 85000 0edB3IB2 0e 8352
0.90000 0671209 0471209
095000 1.00000 1.000900
ENERGY SMOOTHNESS
2.26044 0.75000 10
1.00385 037170 1t
063214 0.18585 10
Des4629 De 09293 11
035337 0e.04646 10
Ne30690 Os 02967 19
029207 0.04121 18
Ne29207 0.04368 17
029207 0e04162 16
0.29207 0.03729 15

€rror
error

DOINT MMOVED

17
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EXAMPLE 3

1.000

¢.8001

0.4004
0.2004
~0.000-
-5.200-
-0, 40C-

=0.6001

-0.6064

LINSAR SMOSTHING
S¥O0THNESSs 0.3717 -
1 ITERATIONS

=1.000

~ o
(%]
+
w

10
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EXAMPLE 3

1.000

0.860+

0.400+

0.4004

0.2001

-0.6004

-0.200

-0.400+

-0.600

-0.8C0+

-1.000

LINEAR SMCOTHING
SROOTHAESS= 0.1858
2 ITERATIONS

-
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.000

.8001

.2001

.0004

. 200

L4C0

L6004

.6C04

.0G0

EXAMPLE 3

. 660 LINEAR SMOOTHING
smooTHRESS= 0, 0929
. 4004 3 ITERATIONS
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EXAMPLE 3

1.000

0.8004

0.600+

0.4004

0.200+

-0.000-

-0.2064

~0.400

=0.6004

~0.800+

LINEAR SMGOTHING
SmoOTHNESS= 0. 0Lk

4% ITERATIONS

=1.000



\

&Y

-1

.000

L6004

4004

.2304

. 0004

.200+

. 400

. 6004

.800

.000

EXAMPLE 3

.800+

LINEAR SMOOTHING

SMOOTHRESS=0, 0296
5 ITERATIONS

-
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